This Accepted Manuscript has not been copyedited and formatted. The final version may differ from this version.

Research Articles: Systems/Circuits

Development of glutamatergic proteins in human visual cortex across the lifespan

Caitlin R. Siu^{1,†}, Simon P. Beshara^{1,†}, David G. Jones² and Kathryn M. Murphy^{1,3}

¹McMaster Integrative Neuroscience Discovery and Study (MiNDS) Program, McMaster University, Hamilton ON

DOI: 10.1523/JNEUROSCI.2304-16.2017

Received: 20 July 2016 Revised: 30 April 2017 Accepted: 3 May 2017 Published: 29 May 2017

Author Contributions: CS Designed research, performed research, analyzed data, wrote the paper; SB designed research, performed research, analyzed data, wrote the paper; DJ analyzed data; KM designed research, analyzed data, wrote the paper.

Conflict of Interest: Authors report no conflict of interest.

We thank Kyle Hornby and Dr Joshua Pinto for technical help and Justin Balsor for comments on the manuscript.

Funding Sources: NSERC Grant RGPIN-2015-06215 awarded to KM, Woodburn Heron OGS awarded to CS, NSERC PGS awarded to SB, and OCE awarded to DJ.

Corresponding Author: Kathryn M Murphy, Dept of Psychology Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada, e-mail: kmurphy@mcmaster.ca

Cite as: J. Neurosci; 10.1523/JNEUROSCI.2304-16.2017

Alerts: Sign up at www.jneurosci.org/cgi/alerts to receive customized email alerts when the fully formatted version of this article is published.

Accepted manuscripts are peer-reviewed but have not been through the copyediting, formatting, or proofreading process.

²Pairwise Affinity Inc, Dundas ON

³Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton ON

[†]These authors contributed equally.

1 2 3	1. Manuscript Title: Development of glutamatergic proteins in human visual cortex across the lifespan
4	2. Abbreviated Title: Development of human visual cortex
5 6	3. Authors: Caitlin R. Siu ^{1*} , Simon P. Beshara ^{1*} , David G. Jones ² , Kathryn M. Murphy 1,3
7 8 9 10 11 12	McMaster Integrative Neuroscience Discovery and Study (MiNDS) Program, McMaster University, Hamilton ON Pairwise Affinity Inc, Dundas ON Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton ON These authors contributed equally
13 14 15 16	4. Author Contributions: CS Designed research, performed research, analyzed data, wrote the paper; SB designed research, performed research, analyzed data, wrote the paper; DJ analyzed data; KM designed research, analyzed data, wrote the paper.
17 18 19 20	5. Corresponding Author: Kathryn M Murphy, Dept of Psychology Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada e-mail: kmurphy@mcmaster.ca
21	6. Number of Figures: 7
22 23 24	7. Number of Tables: 1
25	8. Number of multimedia: 0
26 27 28	9. Number of Words for Abstract: 243
29	10. Number of words for Significance Statement: 117
30 31 32	11. Number of words for Introduction: 494
33 34	12. Number of words for Discussion: 1640
35 36 37	13. Acknowledgements: We thank Kyle Hornby and Dr Joshua Pinto for technical help and Justin Balsor for comments on the manuscript.
38 39	14. Conflict of interest: Authors report no conflict of interest
40 41 42	15. Funding Sources: NSERC Grant RGPIN-2015-06215 awarded to KM, Woodburn Heron OGS awarded to CS, NSERC PGS awarded to SB, and OCE awarded to DJ.

Abstract

Traditionally, human primary visual cortex (V1) has been thought to mature within the first
few years of life, based on anatomical studies of synapse formation, and establishment of intra-
and inter-cortical connections. Human vision, however, develops well beyond the first few years.
Previously, we found prolonged development of some GABAergic proteins in human V1 (Pinto
et al., 2010). Yet as over 80% of synapses in V1 are excitatory, it remains unanswered if the
majority of synapses regulating experience-dependent plasticity and receptive field properties
develop late like their inhibitory counterparts. To address this question, we used Western blotting
of post-mortem tissue from human V1 (12 female, 18 male) covering a range of ages. Then
quantified a set of post-synaptic glutamatergic proteins (PSD-95, GluA2, GluN1, GluN2A,
GluN2B), calculated indices for functional pairs that are developmentally regulated
(GluA2:GluN1; GluN2A:GluN2B), and determined inter-individual variability. We found early
loss of GluN1, prolonged development of PSD-95 and GluA2 into late childhood, protracted
development of GluN2A until ~40 years and dramatic loss of GluN2A in aging. The
GluA2:GluN1 index switched at \sim 1 year but the GluN2A:GluN2B index continued to shift until
~40 year before changing back to GluN2B in aging. We also identified young childhood as a
stage of heightened inter-individual variability. The changes show that human V1 develops
gradually through a series of 5 orchestrated stages, making it likely that V1 participates in visual
development and plasticity across the lifespan.

Significance

53	Anatomical structure of human V1 appears to mature early, but vision changes across the
54	lifespan. This discrepancy has fostered 2 hypotheses: either other aspects of V1 continue
55	changing, or later changes in visual perception depend on extrastriate areas. Previously, we
66	showed that some GABAergic synaptic proteins change across the lifespan but most synapses in
57	V1 are excitatory leaving unanswered how they change. So we studied expression of
8	glutamatergic proteins in human V1 to determine their development. Here we report prolonged
59	maturation of glutamatergic proteins, with 5 stages that map onto life-long changes in human
0	visual perception. Thus, the apparent discrepancy between development of structure and function
1	may be explained by life-long synaptic changes in human V1.

Introduction

Anatomical development of human visual cortex (V1) proceeds quickly over the first few
years (Huttenlocher et al., 1982; Zilles et al., 1986; Burkhalter, 1993; Burkhalter et al., 1993) but
maturation of vision is slow, changing through childhood, adolescence, adulthood and aging
(Kovács et al., 1999; Lewis and Maurer, 2005; Germine et al., 2011; Owsley, 2011). The
discrepancy between development of structure and function led to the idea that prolonged
maturation of vision might depend on features of V1 not captured by anatomical studies (Taylor
et al., 2014). For example, some GABAergic and myelin proteins involved with plasticity
continue developing into adulthood in human V1 (Pinto et al., 2010; Siu et al., 2015). Most V1
synapses, however, are excitatory (Beaulieu et al., 1992) and glutamatergic receptors regulate
experience-dependent plasticity (Hensch, 2004; Turrigiano and Nelson, 2004; Cooper and Bear,
2012; Levelt and Hübener, 2012) and receptive field properties (Ramoa et al., 2001; Rivadulla et
al., 2001; Fagiolini et al., 2004; Self et al., 2012). Currently, little is known about expression of
glutamatergic proteins in human V1 (Huntley et al., 1994; Scherzer et al., 1998) and less about
how they change across the lifespan (Pinto et al., 2015).
Animal models found that activation of glutamate receptors, NMDA (N-methyl-D-aspartate)
and AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid), regulate plasticity in V1
(Kleinschmidt et al., 1987; Daw et al., 1992; Turrigiano and Nelson, 2004; Yashiro and Philpot,
2008; Smith et al., 2009; Cooke and Bear, 2014; Turrigiano, 2017). The recruitment of
AMPARs to silent synapses starts the critical period (CP) (Rumpel et al., 1998) and an increase
in the glutamate receptor scaffolding protein, PSD-95, consolidates synapses to end the CP
(Huang et al., 2015). The composition of AMPARs and NMDARs regulates juvenile ocular
dominance plasticity starting with weakening of deprived eye responses by the rapid loss of
GluA2 (Heynen et al., 2003; Lambo and Turrigiano, 2013) and increase of GluN2B (Chen and
Bear 2007) Next onen eve responses are strengthened by an increase of GluA2 (Lambo and

97	Turrigiano, 2013) and decrease of GluN2A (Smith et al., 2009). The developmental shift from
98	more GluN2B to more GluN2A (2A:2B balance) regulates metaplasticity since GluN2B allows
99	more Ca2+ to enter the synapse and activate LTP mechanisms (Yashiro and Philpot, 2008). The
100	2A:2B balance shifts during the CP (Sheng et al., 1994) when visual experience drive a loss of
101	GluN2B (Philpot et al., 2001), an increase of GluN2A (Quinlan et al., 1999a; 1999b), and
102	reduces ocular dominance plasticity (Philpot et al., 2003; 2007).
103	December field manageries in VI are also recorded by obstances recontage. The danger
103	Receptive field properties in V1 are also regulated by glutamate receptors. The dense
104	expression of glutamate receptors in layers 2/3 and 4 (Huntley et al., 1994; Kooijmans et al.,
105	2014) supports AMPARs dominated feed-forward and NMDARs dominated feed-back drive
106	(Self et al., 2012). Furthermore, development of orientation preference is prevented by
107	suppressing NMDARs (Ramoa et al., 2001) and requires the GluN2A subunit (Fagiolini et al.,
108	2003).
109	Here, we investigate development of glutamate receptors in human V1 (PSD-95, GluN1,
110	GluN2A, GluN2B and GluA2) from birth to 80 years of age. We find changes that could
111	contribute to visual processing and plasticity throughout the lifespan.

Materials and Methods

Samples The post-mortem tissue samples from human visual cortex used in this study were obtained
from the Brain and Tissue Bank for Developmental Disorders at the University of Maryland
(Baltimore, MD, USA) and the study was approved by the McMaster University Research Ethics
Board. Cortical samples were from individuals with no history of brain disorders, and all causes
of death were with minimal trauma. Samples were collected within 23 hours post-mortem,
sectioned coronally in 1cm intervals, flash frozen at the Brain and Tissue Bank, and stored at -
80°C. Visual cortex samples were taken from the posterior pole of the left hemisphere and
included both superior and inferior portions of the calcarine fissure. A total of 30 cases were
used and ranged in age from 20 days to 79 years (Table 1).
Sample preparation A small piece of tissue (50-100mg) was cut from the calcarine fissure of each frozen block of
human V1, suspended in cold homogenization buffer (1ml buffer: 50mg tissue, 0.5mM DTT,
2mM EDTA, 2mM EGTA, 10mM HEPES, 10mg/L leupeptin, 100nM microcystin, 0.1mM
PMSF, 50mg/L soybean trypsin inhibitor), and homogenized in a glass-glass Dounce hand
homogenizer (Kontes, Vineland, NJ, USA). To enrich for synaptic proteins, we used a
synaptosome preparation. Homogenate samples were filtered through coarse (100 μg) and fine (5
$\mu g)$ pore hydrophilic mesh filters (Millipore, Bedford, MA, USA), and then centrifuged at 1000 x
g for 10 minutes to obtain the synaptic fraction. The synaptosome pellet was resuspended in
boiling 1% sodium-dodecyl-sulfate (SDS), heated for 10 minutes and stored at -80°C.
Synaptosome protein measurement and equating Low abundance synaptic proteins are enriched 3- to 5-fold by the synaptosome preparation
(Murphy et al., 2014) which facilitates the reliable detection of synaptic proteins by Western blot
analysis. In contrast, housekeeping proteins used as loading controls, such as GAPDH or $\beta\text{-}$

tubulin, are reduced about 10-fold in a synaptosome preparation because the small synaptosome

138	volume is dominated by synaptic proteins (Balsor & Murphy, unpublished observation).	
139	Moreover, those loading controls are known to exhibit high variability (Lee et al., 2016) and	
140	change under many conditions including experience (Dahlhaus et al., 2011) and development	
141	(Pinto et al., 2015). For these reasons, normalizing an enriched synaptosome preparation with a	
142	diminished loading control can lead to the undesirable outcome of inflating the apparent	
143	expression of synaptic proteins, especially early in development. It is important, however, for	
144	Western blot analyses to accurately quantify total protein and to load equivalent amounts. To	
145	achieve these, we used a stringent 3 stage protocol to measure and equate protein concentrations	
146	6 among the samples and then load equivalent volumes into each gel.	
147	To measure and equate protein concentration for each synaptosome sample, we used a	
148	bicinchoninic acid (BCA) assay (Pierce, ThermoFisher Scientific, Rockford, IL, USA) and	
149	compared the samples with a set of protein standards (0.25, 0.5, 1.0, 2.0 mg/ml) (Bovine Serum	
150	Albumin (BSA) protein standards, Bio-Rad Laboratories, Hercules, CA, USA). We mixed a	
151	small amount of each sample and standard (9 $\mu l)$ with BCA assay solution (1:100), and loaded 3	
152	aliquots (each 300 μ l) into separate wells of a 96-well microplate. The plate was incubated at	
153	45°C for 45 minutes to activate the reaction, then scanned in an iMark Microplate Absorbance	
154	Reader (Bio-Rad Laboratories, Hercules, CA, USA) to quantify the colorimetric change. Next,	
155	we plotted the absorbance values of the standards relative to their known concentrations, and fit a	
156	linear correlation to the data. The fit for the correlation had to be $R^2 > 0.99$, and if it did not reach	
157	that level, the BCA assay was re-run. The absorbance of the human samples was measured and	
158	averaged for the 3 aliquots. This sample absorbance value and the linear equation fit to the	
159	standards were used to determine the amount of Laemmli buffer (Cayman Chemical Company,	
160	Ann Arbor, MI, USA) and sample buffer (M260 Next Gel Sample loading buffer 4x, Amresco	
161	LLC, Solon, OH, USA) needed to achieve protein concentrations of $1\mu g/\mu l.$ Finally, to ensure	
162	loading of equivalent volumes into each well of the gel we used a high-quality pipette (e.g.	

Picus, Sartorius Corp Bohemia, NY USA) and performed regular calibrations.

164 165	Immunoblotting Synaptosome samples (20 μg) were separated on 4-20% SDS-polyacrylamide gels (SDS-
166	PAGE) and transferred to polyvinylidene difluoride (PVDF) membranes (Immobilon-FL PVDF,
167	EMD Millipore, Billerica, MA, USA). Each sample was run multiple times and a control sample
168	made by combining a small amount of the synaptosome preparation from each of the 30 cases,
169	was run on each gel. Blots were pre-incubated in blocking buffer for 1 hour (Odyssey Blocking
170	Buffer 1:1 with phosphate buffer saline (PBS)) (Li-Cor Biosciences; Lincoln, NE, USA), then
171	incubated in primary antibody overnight at 4°C using these primary antibodies: Anti-NMDAR1,
172	1:4000 (RRID: AB_396353, BD Pharmingen, San Jose, CA); Anti-NR2A, 1:1000 (RRID:
173	AB_95169, EMD Millipore, Billerica, MA, USA); Anti-NMDAR2B, 1:1000 (RRID:
174	AB_2112925, EMD Millipore, Billerica, MA, USA); Anti-GluA2, 1:1000 (RRID: AB_2533058,
175	Invitrogen, Waltham, MA, USA); Anti-PSD95, 1:16000 (RRID: AB_94278, EMD Millipore,
176	Billerica, MA, USA). These antibodies were selected after testing them on a multi-species blot
177	that included samples from human, monkey, cat, and rat to ensure that the human samples had
178	bands comparable with the other species. The blots were washed with PBS-Tween (0.05% PBS-
179	T, Sigma, St. Louis, MO, USA) (3x10 minutes) and incubated for 1 hour at room temperature
180	with the appropriate IRDye labeled secondary antibody, (Anti-Mouse, 1:8000, RRID:
181	AB_10956588; Anti-Rabbit, 1:10,000, RRID: AB_621843; Li-Cor Biosciences, Lincoln, NE,
182	USA), and washed again in PBS-Tween (3x10 minutes). The bands were visualized using the
183	Odyssey scanner (Li-Cor Biosciences; Lincoln, NE, USA) and we determined that the amount of
184	protein loaded into each well and the antibody concentrations were within the linear range of the
185	Odyssey scanner. After scanning, the blots were stripped using a Blot Restore Membrane
186	Rejuvenation Kit (EMD Millipore, Billerica, MA, USA), re-scanned to ensure complete
187	stripping, and then re-probed with another antibody.

212

213

188 **Band analysis** 189 To analyze the bands, blots were scanned on an Odyssey infrared scanner and quantified 190 using densitometry (Li-Cor Odyssey Software version 3.0; Li-Cor Biosciences; Lincoln, NE, 191 USA). A density profile for each band was calculated by performing a subtraction of the 192 background, integrating the pixel intensity across the area of the band, and dividing the intensity 193 by the width of the band to control for variations in lane width. A control sample, made by 194 combining a small amount from each sample, was run on each gel and the density of each sample 195 was quantified relative to the control (sample density/control density). 196 Band image manipulation 197 Bands shown on figures are representative samples and were added to the figures in 198 Photoshop (Adobe Systems Inc, San Jose, CA, USA, RRID:SCR_014199). Horizontal and 199 vertical transformations were applied to size and orient the bands for each figure. A linear 200 adjustment layer was applied uniformly to all bands for each protein, preserving the relative 201 intensities among bands. 202 Receptor subunit index 203 To quantify the balance between functional pairs of proteins, we calculated a difference ratio, 204 often called a contrast index, that is commonly used in signal processing to determine the quality 205 of a signal. We calculated 2 indices that reflect the balance between pairs of proteins that are 206 developmentally regulated: AMPA:NMDA index -- (GluA2-GluN1)/(GluA2+GluN1); and 207 NMDAR subunit 2A:2B index -- (GluN2A-GluN2B)/(GluN2B+GluN2A). These indices can 208 have values between -1 and +1. 209 Curve-fitting and statistical analyses 210 The results were plotted in two ways to visualize and analyze changes in expression across the

lifespan. First, to describe the time course of changes in protein expression, scatterplots were

the runs (black dots). To determine the trajectory of changes across the lifespan we used a

made for each protein showing the expression level from each run (grey dots) and the average of

214	model-litting approach (Christopoulos and Lew, 2000) and found the best curve-lit to the data	
215	using Matlab (The MathWorks, Inc, Natick, MA, RRID: SCR_001622). A single-exponential	
216	decay function (Y=A*exp(-(x/τ))+B) was fit to the data for GluN1. A Gaussian function	
217	$(Y=A*exp(-((log(x/\mu)^2)/(2*(\sigma^2)))+B)$ was fit to the data for PSD-95, GluA2, GluN2B, and the	
218	2A:2B index. A quadratic function was fit to the AMPA:NMDA balance	
219	$(Y = A + B * log(x) + C * log(x)^2). \ \ Finally, a weighted average was used to describe the trajectory for$	
220	GluN2A. The fits were found by least squares, and the goodness-of-fit (R^2) and statistical	
221	significance of the fit (p) were determined. For the decay function, we calculated the time	
222	constants (τ) and defined 3τ (when 87.5% of the change in expression had occurred) as the age	
223	when mature expression was reached with the 95% confidence interval (95% CI) around that	
224	age. For Gaussian functions, the age at the peak was calculated and the 95% CI determined.	
225	Second, to compare changes among different stages across the lifespan, samples were binned	
226	into age groups (<0.3 years, Neonates; 0.3-1 year, Infants; 1-4 years, Young Children; 5-11	
227	years, Older Children; 12-20 years, Teens; 21-55 years, Young Adults; >55 years, Older Adults)	
228	and histograms were plotted showing the mean and standard error of the mean (SEM) for each	
229	group. We used bootstrapping to make statistical comparisons among the groups since this	
230	method provides robust estimates of standard error and CI, which are especially useful for	
231	human studies constrained to smaller sample sizes. The statistical software R (R Core Team	
232	(2014), R: A language and environment for statistical computing. R Foundation for Statistical	
233	Computing, Vienna, Austria, URL http://www.R-project.org /, RRID: SCR_001905) was used for	
234	the bootstrapping and we began by simulating a normally distributed dataset (1,000,000 points)	
235	with the same mean and standard deviation of the group being compared. We used this normally	
236	distributed dataset to determine if the observed means for the other age groups were significantly	
237	different. A Monte Carlo simulation was used to randomly sample from the simulated dataset N	
238	times, where N was the number of cases in the other age groups. This simulation was run 10,000	
239	times to generate an expected distribution for the N number of cases. Confidence intervals (CI)	

240	were calculated for that simulated distribution (i.e. 95%, 99% CI) and compared with the
241	observed group means. The age groups were considered to be significantly different (i.e.
242	p<0.05) when the observed mean was outside the 95% CI.
243 244	Analysis of Inter-individual variability Previously we identified ages during infancy and childhood with waves of high inter-
245	individual variability (Pinto et al., 2015; Siu et al., 2015). To analyze if the glutamatergic
246	proteins studied here have similar waves of inter-individual variability we calculated the Fano-
247	Factor (Variance-to-Mean Ratio - VMR) for each protein and examined how it changed across
248	the lifespan. The VMR around each case was determined by calculating the mean and variance
249	for the protein expression within a moving box that included 3 adjacent ages and then dividing
250	the variance by the mean. Scatter plots were made to show how the VMRs changed across the
251	life span and functions were fit to those data to identify ages when there was high inter-
252	individual variability. The VMRs were fit with the same Gaussian function described above, and
253	a wave of higher inter-individual variability was identified when 4 or more points at the peak fell

above the 95% CI for lower bound of the curve.

255	Results
255	Results

	stmortem interval We examined whether glutamate protein expression levels were affected by post-mortem
inte	erval (PMI). First, we verified that immunoreactivity was present and then analyzed the
cor	relation between PMI and protein expression. There were no significant correlations between
PM	If and expression of the 5 glutamatergic proteins (PSD-95: R=0.05, p=0.66; GluA2: R=0.17,
p=0	0.13; GluN1: R=0.26, p=0.11; GluN2A: R=0.17, p=0.41; GluN2B: R=0.16, p=0.24) so all of
the	data was included in the following analyses.
Glu	ow development of PSD-95, earlier but opposite development of GluA2 and uN1
	We began analyzing development of glutamate proteins in human V1 by measuring
exp	pression of PSD-95, a scaffolding protein involved in anchoring AMPA and NMDA receptors
(Ki	m and Sheng, 2004), controlling visual developmental plasticity (Yoshii et al., 2003), and
end	ling the CP for ocular dominance plasticity (Huang et al., 2015). We found a steady increase
in e	expression of PSD-95 in the synaptosome preparation used in this study and analyzed the
rest	ults in two ways (Fig. 1). First, by model-fitting to all the data to determine the best curve to
cap	ture changes across the lifespan, and second, by binning the data into age groups and using
boo	otstrapping for statistical comparisons between groups. Development of PSD-95 peaked at 9.6
yea	rs (\pm -4.1 years; R ² =0.457, p<0.0001) (Fig. 1A). This result was similar to our previous
fino	lings using whole homogenate samples (Pinto et al., 2015). The magnitude of the peak in the
syn	aptosome, however, was about half that found using the whole homogenate ((Pinto et al.,
201	5) figure 3), suggesting there could be a large mobile pool of PSD-95 during late childhood.
Cor	mparing the age-binned results showed a 3-fold increase in PSD-95 expression during
dev	relopment that reached a peak in older children (5-11 years, p<0.001) before dropping about
30%	% into aging (p<0.001) (Fig. 1B). The PSD-95 peak corresponded with the age when children

are no longer susceptible to amblyopia (Lewis and Maurer, 2005) and may signify that PSD-95

281	contributes to ending the CP for ocular dominance plasticity in humans similar to its role in rat
282	V1 (Huang et al., 2015).
283	Next, we quantified development of GluA2 and GluN1, which identify the 2 main classes of
284	ionotropic glutamate receptors AMPARs and NMDARs, respectively. Development of these
285	subunits followed a similar pattern to that found in animal studies, where GluA2 increased, while
286	GluN1 decreased during development (Fig. 1C-F). GluA2 expression increased about 40%
287	during childhood and then declined a similar amount into adulthood and aging. The GluA2
288	developmental trajectory peaked at 3.1 years (+/- 1.8 years, R ² =0.131, p<0.01) (Fig. 1C).
289	Comparison of GluA2 expression among the age groups, however, identified a slightly later peak
290	during late childhood (5-11 years) (Fig. 1D). The uncertainty about the peak for GluA2 probably
291	reflects variability in expression during childhood and the modest increase between neonates and
292	older children.
202	
293	The trajectory of GluN1 expression started high under 1 year of age, then rapidly decreased to
294	a relatively constant level for the rest of the lifespan (Fig. 1E,F). The change in GluN1
295	expression was fit with an exponential decay function (R ² =0.482, p<0.0001) that fell to mature
296	levels (3 τ) by 4.2 years (+/- 1.7 years) (Fig. 1E). The same pattern was found when we
297	compared among age groups where GluN1 levels were higher under 1 year and dropped by
298	almost half during young childhood (1-4 years) (p<0.001) and remained at that level for the rest
299	of the lifespan (Fig. 1F).
300	Comparing the changes across the lifespan for PSD-95, GluA2, and GluN1 we found different
301	timing (GluA2 and GluN1 matured before PSD-95), different directions (PSD-95 and GluA2
302	increased while GluN1 decreased), and different amounts of protein change. Thus, even these 3
303	tightly associated proteins had different developmental trajectories.

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

Early shift from more NMDA to more AMPA in human V1 Animal studies have shown that there is an early developmental shift from NMDARdominated silent synapses to functional synapses with AMPARs (Isaac et al., 1997; Rumpel et al., 1998). Here we examined development of the AMPA:NMDA balance in human V1 as an indication of functional maturation of glutamatergic transmission. We calculated an AMPA:NMDA index where a value of -1 indicated only GluN1 expression, 0 indicated equal expression, and +1 indicated only GluA2 expression. We found an early switch from more GluN1 under 1 year of age to more GluA2 after 1 year (Fig. 2). The AMPA:NMDA balance was fit with a quadratic function (R^2 =0.406, p<0.0001) that captured the shift from GluN1 to GluA2 that peaked at 10.7 years (95%CI 4.8-23.7 years) before slowly returning to equal expression during aging (Fig. 2A). The age-binned results showed the same pattern of a significant switch at 1 year, GluA2 peaking during late childhood, and returning to balanced expression in older adults (Fig. 2B). The changes in this AMPA:NMDA balance suggest an early stage of human V1 development during infancy (<1 year) that may characterize unsilencing of glutamate synapses followed by AMPAR dominated excitatory drive during childhood and young adults before regressing to balanced AMPAR and NMDAR expression in aging. GluN2A and GluN2B subunit expression in human V1 We examined developmental changes in expression of 2 NMDAR subunits, GluN2A and GluN2B because they affect development of receptive field tuning and ocular dominance plasticity. In particular, the rise of GluN2A and concomitant loss of GluN2B during the CP is one mechanism that causes reduced ocular dominance plasticity in adult cortex (Philpot et al., 2007). The scatterplot of GluN2B expression showed a modest peak during childhood and relatively constant expression through teens, young adults, and older adults (Fig. 3A&B). The GluN2B trajectory was fit by a Gaussian function (R²=0.176, p<0.01) that peaked at 1.2 years

(+/- 0.7 years) (Fig. 3A). We compared GluN2B expression among the age groups and found

329	higher levels during childhood (5-11 years) relative to teens, young adults, and older adults (Fig.
330	3B) (p<0.01).
331	The developmental trajectory for GluN2A was different from GluN2B. Initially, GluN2A
332	expression was low, then variable during childhood and teenage years (8 cases with low and 3
333	cases with high GluN2A expression) followed by high expression in young adults and ending
334	with a large (~75%) decline into aging. The variability during childhood reduced the goodness-
335	of-fit for a Gaussian function so instead we plotted a descriptive weighted curve (Fig. 3C).
336	Interestingly, the 3 childhood cases with high GluN2A expression also had high GluN2B
337	expression. Binning the results into age groups showed that young adults had more GluN2A
338	expression than infants (p<0.001), young children (p<0.01), teens (p<0.01), and older adults
339	(p<0.001) (Fig 3. D).
340	NMDARs are tetrameric channels with diheteromeric nascent receptors comprised of
341	GluN1/GluN2B that shift during development with the majority becoming triheteromers
342	comprised of GluN1/GluN2A/GluN2B (Sheng et al., 1994). Since GluN1 is a component of all
343	NMDARs we normalized expression of GluN2A and GluN2B to the expression of GluN1 to
344	determine if high variability during childhood was driven by variability in the total pool of
345	NMDARs. Normalizing with GluN1 expression reduced the variability for both GluN2A and
346	GluN2B throughout childhood, it also enhanced the GluN2B peak in late childhood (Fig. 4
347	A&B) and the GluN2A peak in adulthood (Fig. 4 C&D). The GluN1 normalization, however,
348	did not eliminate variability of GluN2A and GluN2B during childhood.
349 350	2A:2B balance: protracted change across the lifespan Visual experience shifts the 2A:2B balance in favour of GluN2A (Quinlan et al., 1999a;
351	1999b) and that regulates the synaptic modification threshold for engaging long-term
352	potentiation (LTP) versus long-term depression (LTD) (Philpot et al., 2007). Since the 2A:2B
353	balance is a key mechanism regulating visual experience-dependent metaplasticity, we analyzed

354	it for human V1 by calculating an index of 2A:2B expression for each case. Here we found an
355	orderly progression from more GluN2B under 5 years of age, to roughly balanced GluN2B and
356	GluN2A during the teen years, to a peak with more GluN2A during adulthood, followed by a
357	shift back to more GluN2B in aging (Fig. 5 A&B). These changes in the 2A:2B balance were fit
358	by a Gaussian function (R^2 =0.633, p<0.0001) that peaked at 35.9 years (+/- 4.6 years) (Fig. 5A).
359	The binned results illustrate the progressive shift towards significantly more GluN2A in
360	adulthood and then shifting back to GluN2B in aging (Fig. 5B). The orderly shift in the 2A:2B
361	balance, especially through childhood, was somewhat surprising since the individual subunits
362	showed a lot of variability at that stage. The low variability of the 2A:2B index suggests that the
363	balance between this pair of subunits, rather than the absolute amount of each, is a critical
364	component for GluN2A and GluN2B regulation of developmental plasticity. Importantly, when
365	compared with animal models where the shift to GluN2A is complete by the end of the CP
366	(Sheng et al., 1994; Quinlan et al., 1999a; Beston et al., 2010), the 2A:2B shift in human V1
367	continued for 25 years beyond the age for susceptibility of developing amblyopia (Lewis and
368	Maurer, 2005).
369 370	Waves of inter-individual variability during childhood Many studies of human brain development and function have found large inter-individual
371	variations including our studies of synaptic and non-synaptic proteins in human V1. We analyzed
372	inter-individual variability and found waves of higher variability in childhood (Pinto et al., 2015;
373	Siu et al., 2015). Here we applied the same approach and calculated the Fano factor to determine
374	how the variance-to-mean ratio (VMR) changed across the lifespan for the current set of
375	glutamatergic proteins.
376	We found that each glutamatergic protein had a wave of higher inter-individual variability
377	during childhood that was well fit by a Gaussian function (Fig. 6 A-E). There was a progression
378	in the peak age of inter-individual variability (VMRs) that began with GluN1 and GluN2B at 1.1
379	years (GluN1, +/- 0.2 years, R^2 = 0.8, $p < 0.0001$)(GluN2B, +/- 0.3 years, R^2 = 0.618, $p < 0.0001$),

to GluN2A at 1.6 years (+/- 0.4 years, R^2 = 0.694, p < 0.0001), to GluA2 at 2.1 years (+/- 0.6 years, R^2 = 0.641, p < 0.0001), to PSD-95 at 2.5 years (+/- 0.5 years, R^2 = 0.778, p < 0.0001) (Fig 6 A-E). We plotted the progression of peak ages for inter-individual variability with their 95% CIs to show that variability occurred between 1-3 years of age and the peaks started with GluN1 and GluN2B then progressed to GluN2A, GluA2 and ended with PSD-95 (Fig. 6F).

Discussion

Our results show that development of glutamatergic synaptic proteins in human V1 mirror
changes in visual perception across the lifespan. Human visual perception matures in stages
(Ellemberg et al., 1999; Kovács et al., 1999; Braddick et al., 2005; Owsley, 2011; Hartshorne
and Germine, 2015), and the glutamate receptor proteins studied here revealed 5 stages of
development (Fig. 7). Those stages can support structural maturation of the intrinsic network,
visually driven plasticity, closure of the CP, synaptic stability, and degeneration in human V1.
These results are similar to the maturation of GABAergic proteins in human V1 (Pinto et al.,
2010) and suggest that synaptic changes in V1 are likely to impact visual perception and
plasticity across the lifespan.
Glutamatergic proteins regulate fundamental aspects of excitatory neurotransmission (Cull-
Candy et al., 1998), visual plasticity (Turrigiano, 2008; Yashiro and Philpot, 2008; Cooke and
Bear, 2014; Turrigiano, 2017), and receptive field properties in V1 (Ramoa et al., 2001;
Rivadulla et al., 2001; Fagiolini et al., 2004; Self et al., 2012). Quantification of these proteins
by Western blotting is one of the few methods that can track the maturation of human V1 to link
changes in synaptic function, network structure, and visual perception. Protein analysis,
however, does not address the cell types, layers, and circuits that are changing. Nor does it
separate pre- and post-synaptic NMDARs which play different roles in neurotransmission and
experience-dependent plasticity (Banerjee et al., 2016). The current results may provide a
blueprint to focus anatomical and other studies of human V1 on key stages of development.
Five stages of glutamatergic protein development in human V1 Stage 1: the first year structural maturation of the intrinsic network
Initially, GluN1 expression was high and then a rapid reduction at ~1 year caused a switch in
the AMPA:NMDA balance to more GluA2. That pattern suggests initial dominance by

NMDAR-containing silent synapses that are rapidly replaced by AMPAR-containing active

synapses (Isaac et al., 1997; Rumpel et al., 1998). The loss of GluN1 at \sim 1 year coincides with a
loss of the endocannabinoid receptor CB1 (Pinto et al., 2010) and since CB1 plays a central role
in establishing excitatory connections (Harkany et al., 2008), the high levels of CB1 and GluN1
may contribute to the functional maturation of intra-cortical (Burkhalter et al., 1993) and inter-
cortical connections (Burkhalter, 1993).
We found that GluN2B dominated the 2A:2B balance throughout stages 1 to 3. Many animal
studies have shown that the 2A:2B balance contributes to developmental plasticity in V1 and
emergence of visual function (Quinlan et al., 1999a; Erisir and Harris, 2003; Philpot et al., 2007;
Cho et al., 2009; Smith et al., 2009; Durand et al., 2012). The dominance of GluN2B suggests
that the synaptic modification threshold favors LTP (Philpot et al., 2007; Yashiro and Philpot,
2008) and V1 neurons are more receptive to potentiation of an open eye's inputs (Cho et al.,
2009). This may explain why just 1 hour of visual experience in an infant is enough to improve
acuity of an eye treated for congenital cataracts (Maurer et al., 1999). Thus, this stage reflects
the establishment of nascent excitatory synapses and initiation of plasticity in V1 circuits.
Stage 2: young children (1-4 years) visually driven plasticity
During the second stage of V1 development, we found progressive increases in GluA2, PSD-
95, and GluN2A but the dominant feature was the wave of inter-individual variability. The
variability was similar to our previous findings for pre- (Synapsin, Synaptophysin), post-synaptic
(Gephyrin, PSD-95), and a non-neuronal protein (Golli myelin basic protein, MBP) (Pinto et al.,
2015; Siu et al., 2015). Variability peaking with GluN1 and GluN2B at \sim 1 year, GluN2A at \sim 1.50 siu et al., 2015).
years, GluA2 at \sim 2 years, and ending with PSD-95 at \sim 2.5 years. Those waves may reflect true
inter-individual variability in young children with cortical development taking off at different
ages. The waves may also represent high levels of intra-individual variability driven by the
dynamics of network states where expression of each synaptic protein could be high one day and

low the next. Since the data here are cross-sectional, we cannot differentiate between these 2

ideas, but the implications for them on cortical development are different. For example, if the
waves reflect on-going dynamics then they could function similar to how feedback about the
network state shifts processing of olfactory circuits in C. elegans (Gordus et al., 2015). In that
model, environmental or other factors could modulate the state of synaptic plasticity. Rather
than thinking about the waves as random or unpredictable, they may reveal a feature of visually
driven plasticity needed to develop adaptive circuits that support visual processing.
Stage 3: older children (5-11 years) closure of the critical period Expression of GluN2B, PSD-95, GluA2 and the AMPA:NMDA balance peaked in the third
stage. These changes could end the CP for ocular dominance plasticity (Erisir and Harris, 2003;
Huang et al., 2015). For example, in mouse V1 PSD-95 ipeaks at the end of the CP and
consolidates AMPA-containing synapses (Huang et al., 2015). This stage also coincides with the
end of susceptibility for children developing amblyopia (Epelbaum et al., 1993; Keech and
Kutschke, 1995; Lewis and Maurer, 2005).
By the end of stage 3, the 2A:2B balance was roughly equal. A shift to more GluN2A in V1
is driven by visual experience (Quinlan et al., 1999b) and the findings here show that the 2A:2B
shift begins in young children, but is still not complete by the end of the CP for developing
amblyopia. In contrast, the 2A:2B shift in animal models is complete by the end of the CP
(Sheng et al., 1994; Quinlan et al., 1999a; Beston et al., 2010). Perhaps the slow 2A:2B shift in
combination with peak expression of GluA2 allows for strong engagement of both Hebbian and
homeostatic forms of experience-dependent plasticity (Turrigiano, 2017).
Stage 4: teens and young adults (12-55 years) synaptic stability Through teens and young adults there was continued development as the 2A:2B balance switched to favor GluN2A and peak expression of GluN2A did not occur until ~40 years. This
may seem like surprisingly slow development for human V1, but it was comparable to the
may seem the surprisingly slow development for numair v1, but it was comparable to the

459	development of some GABAergic proteins (GAD65 and GABA $_{A}\alpha1$) (Pinto et al., 2010) as well
460	as cortical myelin (classic-MBP) (Siu et al., 2015).
461	In mouse V1, the developmental shift to more GluN2A is slower for parvalbumin-positive
462	(PV+) inhibitory interneurons than pyramidal neurons (Mierau et al., 2016). Perhaps the slow
463	2A:2B shift in human V1 reflects late maturation of PV+ cells. Fast-spiking PV+ cells also have
464	GluA2-containing AMPARs (Kooijmans et al., 2014), so they are a site where changes in visual
465	experience could activate inhibitory and excitatory aspects of short-term plasticity in human V1
466	(Lunghi 2011) (Lunghi et al., 2015a; 2015b). Interestingly, blocking NMDARs prevents
467	surround-suppression in monkey V1 (Self et al., 2012) and even a low dose of the non-
468	competitive NMDAR antagonist, ketamine, impairs the performance of human observers on a
469	spatial integration task (Meuwese et al., 2013).
470	The late 2A:2B shift is likely to adjust the synaptic modification threshold making it more
471	difficult for visual experience to engage LTP (Yashiro and Philpot, 2008). More GluN2A will
472	also shorten the decay time of NMDARs (Stocca and Vicini, 1998; Vicini et al., 1998) even for
473	triheteromeric receptors (Hansen et al., 2014). In addition, GluN2A-containing NMDARs are
474	more stable in the synapse (Groc et al., 2006) and their activation promotes cell survival (Liu et
475	al., 2007). These features of GluN2A-containing receptors suggests that this stage reflects a time
476	of synaptic stability in human V1.
477 478	Stage 5: aging (>55 years) degeneration The last stage saw a dramatic ~75% loss of GluN2A expression, bringing it back to levels
479	found in infants (<1 year of age). In contrast, there was no change in GluN2B expression so the
480	2A:2B balance switched back to GluN2B in aging.
481	Age-related changes in human vision (Bennett et al., 2007; Betts et al., 2007) and monkey
482	receptive field properties (Leventhal et al., 2003; Wang et al., 2005; Zhang et al., 2008) have

483	been described as resulting from poor signal-to-noise caused by a loss of inhibition. Our
484	previous study of GABAergic proteins in human V1 found a modest loss of GAD65 (Pinto et al.,
485	2010), but that was much less than the loss of GuN2A found here. Since GluN2A-containing
486	NMDARs are dense on PV+ inhibitory interneurons in young mice (Mierau et al., 2016), the loss
487	of GluN2A in aging human V1 may involve PV+ cells.
488	The age-related 2A:2B shift to more GluN2B is likely to cause slower decay times and weaker
489	conductances at NMDARs (Cull-Candy et al., 1998; Vicini et al., 1998; Hansen et al., 2014). It
490	could also slide the synaptic modification threshold so that visual experience can more readily
491	engage LTP. That plasticity, however, may come at the cost of higher metabolic stress,
492	GluN2B-activated excitotoxicity (Liu et al., 2007) and other vulnerabilities linked with
493	NMDARs changes in aging (Magnusson et al., 2010). It is clear that the aging cortex does not
494	simply become juvenile-like (Williams et al., 2010) and the specific loss of GluN2A found here
495	could be a harbinger of degeneration in human V1.
496	Summary
497	The current results and our other investigations of human V1 show that synaptic and non-
498	synaptic proteins develop through a series of orchestrated stages that extend across the lifespan
499	(Murphy et al., 2005; Pinto et al., 2010; Williams et al., 2010; Pinto et al., 2015; Siu et al., 2015).
500	The glutamatergic proteins studied here are central players in visually-driven plasticity, receptive
501	field properties, and visual function. We found a late shift in the 2A:2B balance and a gradual
502	maturation of GluA2. These findings will enable researchers to test the efficacy of specific
503	neuroplasticity-based therapies at different stages of the lifespan.

504	References
505	
506	Banerjee A, Larsen RS, Philpot BD, Paulsen O (2016) Roles of Presynaptic NMDA Receptors in
507	Neurotransmission and Plasticity. Trends in Neurosciences 39:26–39.
508	Beaulieu C, Kisvarday Z, Somogyi P, Cynader M, Cowey A (1992) Quantitative distribution of
509	GABA-immunopositive and-immunonegative neurons and synapses in the monkey striate
510	cortex (area 17). Cereb Cortex 2:295–309.
511	Bennett PJ, Sekuler R, Sekuler AB (2007) The effects of aging on motion detection and direction
512	identification. VISION RESEARCH 47:799-809.
513	Beston BR, Jones DG, Murphy KM (2010) Experience-dependent changes in excitatory and
514	inhibitory receptor subunit expression in visual cortex. Front Synaptic Neurosci 2:138.
515	Betts LR, Sekuler AB, Bennett PJ (2007) The effects of aging on orientation discrimination.
516	VISION RESEARCH 47:1769–1780.
517	Braddick O, Birtles D, Wattam-Bell J, Atkinson J (2005) Motion- and orientation-specific
518	cortical responses in infancy. VISION RESEARCH 45:3169-3179.
519	Burkhalter A (1993) Development of Forward and Feedback Connections between Areas V1 and
520	V2 of Human Visual Cortex. Cereb Cortex 3:476–487.
521	Burkhalter A, Bernardo KL, Charles V (1993) Development of local circuits in human visual
522	cortex. J Neurosci 13:1916–1931.
523	Chen WS, Bear MF (2007) Activity-dependent regulation of NR2B translation contributes to
524	metaplasticity in mouse visual cortex. Neuropharmacology 52:200–214.

525	Cho KKA, Khibnik L, Philpot BD, Bear MF (2009) The ratio of NR2A/B NMDA receptor
526	subunits determines the qualities of ocular dominance plasticity in visual cortex.
527	Proceedings of the National Academy of Sciences 106:5377–5382.
528	Christopoulos A, Lew MJ (2000) Beyond eyeballing: fitting models to experimental data. Crit
529	Rev Biochem Mol Biol 35:359–391.
530	Cooke SF, Bear MF (2014) How the mechanisms of long-term synaptic potentiation and
531	depression serve experience-dependent plasticity in primary visual cortex. Philosophical
532	Transactions of the Royal Society B: Biological Sciences 369:20130284–20130284.
533	Cooper LN, Bear MF (2012) The BCM theory of synapse modification at 30: interaction of
534	theory with experiment. Nat Rev Neurosci 13:798-810.
535	Cull-Candy SG, Brickley SG, Misra C, Feldmeyer D, Momiyama A, Farrant M (1998) NMDA
536	receptor diversity in the cerebellum: identification of subunits contributing to functional
537	receptors. Neuropharmacology 37:1369–1380.
538	Dahlhaus M, Li KW, van der Schors RC, Saiepour MH, van Nierop P, Heimel JA, Hermans JM,
539	Loos M, Smit AB, Levelt CN (2011) The synaptic proteome during development and
540	plasticity of the mouse visual cortex. Mol Cell Proteomics 10:M110.005413-
541	M110.005413.
542	Daw NW, Fox K, Sato H, Czepita D (1992) Critical period for monocular deprivation in the cat
543	visual cortex. Journal of Neurophysiology 67:197–202.
544	Durand S, Patrizi A, Quast KB, Hachigian L, Pavlyuk R, Saxena A, Carninci P, Hensch TK,
545	Fagiolini M (2012) NMDA receptor regulation prevents regression of visual cortical
546	function in the absence of Mecp2. Neuron 76:1078-1090.

54/	Ellemberg D, Lewis TL, Liu CH, Maurer D (1999) Development of spatial and temporal vision
548	during childhood. VISION RESEARCH 39:2325–2333.
549	Epelbaum M, Milleret C, Buisseret P, Dufier JL (1993) The sensitive period for strabismic
550	amblyopia in humans. Ophthalmology 100:323-327.
551	Erisir A, Harris JL (2003) Decline of the critical period of visual plasticity is concurrent with the
552	reduction of NR2B subunit of the synaptic NMDA receptor in layer 4. Journal of
553	Neuroscience 23:5208–5218.
554	Fagiolini M, Fritschy J-M, Löw K, Möhler H, Rudolph U, Hensch TK (2004) Specific GABAA
555	circuits for visual cortical plasticity. Science 303:1681–1683.
556	Fagiolini M, Katagiri H, Miyamoto H, Mori H, Grant SGN, Mishina M, Hensch TK (2003)
557	Separable features of visual cortical plasticity revealed by N-methyl-D-aspartate receptor
558	2A signaling. Proc Natl Acad Sci U S A 100:2854–2859.
559	Germine LT, Duchaine B, Nakayama K (2011) Where cognitive development and aging meet:
560	face learning ability peaks after age 30. Cognition 118:201–210.
561	Gordus A, Pokala N, Levy S, Flavell SW, Bargmann CI (2015) Feedback from network states
562	generates variability in a probabilistic olfactory circuit. Cell 161:215–227.
563	Groc L, Heine M, Cousins SL, Stephenson FA, Lounis B, Cognet L, Choquet D (2006) NMDA
564	receptor surface mobility depends on NR2A-2B subunits. Proc Natl Acad Sci U S A
565	103:18769–18774.
566	Hansen KB, Ogden KK, Yuan H, Traynelis SF (2014) Distinct functional and pharmacological
567	properties of Triheteromeric GluN1/GluN2A/GluN2B NMDA receptors. Neuron
568	81:1084–1096.

369	Harkany 1, Mackie K, Donerty P (2008) Wiring and firing neuronal networks: endocannabinoids
570	take center stage. Current Opinion in Neurobiology 18:338-345.
571	Hartshorne JK, Germine LT (2015) When does cognitive functioning peak? The asynchronous
572	rise and fall of different cognitive abilities across the life span. Psychol Sci 26:433–443.
573	Hensch TK (2004) Critical period regulation. Annu Rev Neurosci 27:549–579.
574	Heynen AJ, Yoon B-J, Liu C-H, Chung HJ, Huganir RL, Bear MF (2003) Molecular mechanism
575	for loss of visual cortical responsiveness following brief monocular deprivation. Nat
576	Neurosci 6:854–862.
577	Huang X, Stodieck SK, Goetze B, Cui L, Wong MH, Wenzel C, Hosang L, Dong Y, Löwel S,
578	Schlüter OM (2015) Progressive maturation of silent synapses governs the duration of a
579	critical period. Proceedings of the National Academy of Sciences 112:E3131–E3140.
580	Huntley GW, Vickers JC, Janssen W, Brose N, Heinemann SF, Morrison JH (1994) Distribution
581	and synaptic localization of immunocytochemically identified NMDA receptor subunit
582	proteins in sensory-motor and visual cortices of monkey and human. J Neurosci 14:3603-
583	3619.
584	Huttenlocher PR, de Courten C, Garey LJ, Van der Loos H (1982) Synaptogenesis in human
585	visual cortexevidence for synapse elimination during normal development.
586	Neuroscience Letters 33:247–252.
587	Isaac JT, Crair MC, Nicoll RA, Malenka RC (1997) Silent synapses during development of
588	thalamocortical inputs. Neuron 18:269–280.
589	Keech RV, Kutschke PJ (1995) Upper age limit for the development of amblyopia. J Pediatr
590	Ophthalmol Strabismus 32:89–93.

591	Kim E, Sheng M (2004) PDZ domain proteins of synapses. Nat Rev Neurosci 5:771–781.
592	Kleinschmidt A, Bear MF, Singer W (1987) Blockade of "NMDA" receptors disrupts
593	experience-dependent plasticity of kitten striate cortex. Science 238:355-358.
594	Kooijmans RN, Self MW, Wouterlood FG, Beliën JAM, Roelfsema PR (2014) Inhibitory
595	interneuron classes express complementary AMPA-receptor patterns in macaque primary
596	visual cortex. Journal of Neuroscience 34:6303–6315.
597	Kovács I, Kozma P, Fehér A, Benedek G (1999) Late maturation of visual spatial integration in
598	humans. Proc Natl Acad Sci U S A 96:12204–12209.
599	Lambo ME, Turrigiano GG (2013) Synaptic and intrinsic homeostatic mechanisms cooperate to
600	increase L2/3 pyramidal neuron excitability during a late phase of critical period
601	plasticity. Journal of Neuroscience 33:8810–8819.
602	Lee H-G, Jo J, Hong H-H, Kim KK, Park J-K, Cho S-J, Park C (2016) State-of-the-art
603	housekeeping proteins for quantitative western blotting: Revisiting the first draft of the
604	human proteome. Proteomics 16:1863–1867.
605	Levelt CN, Hübener M (2012) Critical-period plasticity in the visual cortex. Annu Rev Neurosci
606	35:309–330.
607	Leventhal AG, Wang Y, Pu M, Zhou Y, Ma Y (2003) GABA and its agonists improved visual
608	cortical function in senescent monkeys. Science Signalling 300:812.
609	Lewis TL, Maurer D (2005) Multiple sensitive periods in human visual development: Evidence
610	from visually deprived children. Dev Psychobiol 46:163–183.
611	Liu Y, Wong TP, Aarts M, Rooyakkers A, Liu L, Lai TW, Wu DC, Lu J, Tymianski M, Craig
612	AM, Wang YT (2007) NMDA receptor subunits have differential roles in mediating

613	excitotoxic neuronal death both in vitro and in vivo. Journal of Neuroscience 27:2846-
614	2857.
615	Lunghi C, Berchicci M, Morrone MC, Di Russo F (2015a) Short-term monocular deprivation
616	alters early components of visual evoked potentials. The Journal of Physiology
617	593:4361–4372.
618	Lunghi C, Emir UE, Morrone MC, Bridge H (2015b) Short-term monocular deprivation alters
619	GABA in the adult human visual cortex. Curr Biol 25:1496–1501.
620	Magnusson KR, Brim BL, Das SR (2010) Selective Vulnerabilities of N-methyl-D-aspartate
621	(NMDA) Receptors During Brain Aging. Front Aging Neurosci 2:11.
622	Maurer D, Lewis TL, Brent HP, Levin AV (1999) Rapid improvement in the acuity of infants
623	after visual input. Science 286:108–110.
624	Meuwese JDI, van Loon AM, Scholte HS, Lirk PB, Vulink NCC, Hollmann MW, Lamme VAF
625	(2013) NMDA receptor antagonist ketamine impairs feature integration in visual
626	perception. Herzog MH, ed. PLoS ONE 8:e79326.
627	Mierau SB, Patrizi A, Hensch TK, Fagiolini M (2016) Cell-Specific Regulation of N-Methyl-D-
628	Aspartate Receptor Maturation by Mecp2 in Cortical Circuits. Biol Psychiatry 79:746-
629	754.
630	Murphy KM, Balsor J, Beshara S, Siu C, Pinto JGA (2014) A high-throughput semi-automated
631	preparation for filtered synaptoneurosomes. Journal of Neuroscience Methods 235:35-40
632	Murphy KM, Beston BR, Boley PM, Jones DG (2005) Development of human visual cortex: a
633	balance between excitatory and inhibitory plasticity mechanisms. Dev Psychobiol
634	46:209–221.

635	Owsley C (2011) Aging and vision. VISION RESEARCH 51:1610–1622.
636	Philpot BD, Cho KKA, Bear MF (2007) Obligatory role of NR2A for metaplasticity in visual
637	cortex. Neuron 53:495–502.
638	Philpot BD, Espinosa JS, Bear MF (2003) Evidence for altered NMDA receptor function as a
639	basis for metaplasticity in visual cortex. Journal of Neuroscience 23:5583-5588.
640	Philpot BD, Sekhar AK, Shouval HZ, Bear MF (2001) Visual experience and deprivation
641	bidirectionally modify the composition and function of NMDA receptors in visual cortex
642	Neuron 29:157–169.
643	Pinto JGA, Hornby KR, Jones DG, Murphy KM (2010) Developmental changes in GABAergic
644	mechanisms in human visual cortex across the lifespan. Front Cell Neurosci 4:16
645	Available at:
646	http://www.frontiersin.org/Journal/Abstract.aspx?s=156&name=cellular_neuroscience&
647	ART_DOI=10.3389/fncel.2010.00016.
648	Pinto JGA, Jones DG, Williams CK, Murphy KM (2015) Characterizing synaptic protein
649	development in human visual cortex enables alignment of synaptic age with rat visual
650	cortex. Front Neural Circuits 9:3.
651	Quinlan EM, Olstein DH, Bear MF (1999a) Bidirectional, experience-dependent regulation of N
652	methyl-D-aspartate receptor subunit composition in the rat visual cortex during postnatal
653	development. Proc Natl Acad Sci U S A 96:12876-12880.
654	Quinlan EM, Philpot BD, Huganir RL, Bear MF (1999b) Rapid, experience-dependent
655	expression of synaptic NMDA receptors in visual cortex in vivo. Nat Neurosci 2:352-
656	357.

657	Ramoa AS, Mower AF, Liao D, Jafri SI (2001) Suppression of cortical NMDA receptor function
658	prevents development of orientation selectivity in the primary visual cortex. Journal of
659	Neuroscience 21:4299–4309.
660	Rivadulla CC, Sharma JJ, Sur MM (2001) Specific roles of NMDA and AMPA receptors in
661	direction-selective and spatial phase-selective responses in visual cortex. J Neurosci
662	21:1710–1719.
663	Rumpel S, Hatt H, Gottmann K (1998) Silent synapses in the developing rat visual cortex:
664	evidence for postsynaptic expression of synaptic plasticity. J Neurosci 18:8863-8874.
665	Scherzer CR, Landwehrmeyer GB, Kerner JA, Counihan TJ, Kosinski CM, Standaert DG,
666	Daggett LP, Veliçelebi G, Penney JB, Young AB (1998) Expression of N-methyl-D-
667	aspartate receptor subunit mRNAs in the human brain: hippocampus and cortex. J Comp
668	Neurol 390:75–90.
669	Self MW, Kooijmans RN, Supèr H, Lamme VA, Roelfsema PR (2012) Different glutamate
670	receptors convey feedforward and recurrent processing in macaque V1. Proc Natl Acad
671	Sci U S A 109:11031–11036.
672	Sheng M, Cummings J, Roldan LA, Jan YN, Jan LY (1994) Changing subunit composition of
673	heteromeric NMDA receptors during development of rat cortex. Nature 368:144-147.
674	Siu CR, Balsor JL, Jones DG, Murphy KM (2015) Classic and Golli Myelin Basic Protein have
675	distinct developmental trajectories in human visual cortex. Front Neurosci 9:138.
676	Smith GB, Heynen AJ, Bear MF (2009) Bidirectional synaptic mechanisms of ocular dominance
677	plasticity in visual cortex. Philosophical Transactions of the Royal Society B: Biological
678	Sciences 364:357–367.

6/9	Stocca G, Vicini S (1998) Increased contribution of NR2A subunit to synaptic NMDA receptors
680	in developing rat cortical neurons. The Journal of Physiology 507 (Pt 1):13-24.
681	Taylor G, Hipp D, Moser A, Dickerson K, Gerhardstein P (2014) The development of contour
682	processing: evidence from physiology and psychophysics. Front Psychol 5:719.
683	Turrigiano GG (2008) The self-tuning neuron: synaptic scaling of excitatory synapses. Cell
684	135:422–435.
685	Turrigiano GG (2017) The dialectic of Hebb and homeostasis. Philosophical Transactions of the
686	Royal Society B: Biological Sciences 372:20160258.
687	Turrigiano GG, Nelson SB (2004) Homeostatic plasticity in the developing nervous system. Nat
688	Rev Neurosci 5:97–107.
689	Vicini S, Wang JF, Li JH, Zhu WJ, Wang YH, Luo JH, Wolfe BB, Grayson DR (1998)
690	Functional and pharmacological differences between recombinant N-methyl-D-aspartate
691	receptors. Journal of Neurophysiology 79:555–566.
692	Wang Y, Zhou Y, Ma Y, Leventhal AG (2005) Degradation of signal timing in cortical areas V1
693	and V2 of senescent monkeys. Cereb Cortex 15:403-408.
694	Williams K, Irwin DA, Jones DG, Murphy KM (2010) Dramatic Loss of Ube3A Expression
695	during Aging of the Mammalian Cortex. Front Aging Neurosci 2:18.
696	Yashiro K, Philpot BD (2008) Regulation of NMDA receptor subunit expression and its
697	implications for LTD, LTP, and metaplasticity. Neuropharmacology 55:1081-1094.
698	Yoshii A, Sheng MH, Constantine-Paton M (2003) Eye opening induces a rapid dendritic
699	localization of PSD-95 in central visual neurons. Proc Natl Acad Sci U S A 100:1334-
700	1339.

701	Zhang J, Wang X, Wang Y, Fu Y, Liang Z, Ma Y, Leventhal AG (2008) Spatial and temporal
702	sensitivity degradation of primary visual cortical cells in senescent rhesus monkeys. Eur J
703	Neurosci 28:201–207.
704	Zilles K, Werners R, Büsching U, Schleicher A (1986) Ontogenesis of the laminar structure in
705	areas 17 and 18 of the human visual cortex. A quantitative study. Anat Embryol 174:339-
706	353.

Figure Legends

708	Figure 1 - Development of PSD-95, GluA2 , and GluN1 expression in human V1. (A) A
709	scatterplot of PSD-95 expression across the lifespan fit with a Gaussian function (R2=0.457,
710	p<0.0001) with peak expression at 9.6 years (+/- 4.1 years). (B) Age-binned results for PSD-95
711	expression. (C) A scatterplot of GluA2 expression across the lifespan fit with a Gaussian
712	function (R2=0.131, p<0.01), with peak expression at 3.1 years (+/- 1.8 years). (D) Age-binned
713	results for GluA2 expression. (E) A scatterplot of GluN1 expression across the lifespan fit with
714	an exponential decay function (R2=0.482, p<0.0001), and fell to mature levels (3τ) at 4.2 years
715	(+/- 1.7 years). (F) Age-Binned results for GluN1 expression. For the scatterplots, grey dots
716	represent each run, black dots represent the average for each case and age was plotted on a
717	logarithmic scale. For the histograms, protein expression was binned into age groups (< 0.3
718	years, Neonates; 0.3-1 year, Infants; 1-4 years, Young Children; 5-11 years, Older Children; 12-
719	20 years, Teens; 21-55 years, Young Adults; >55 years, Older Adults) showing the mean and
720	SEM. Representative bands are shown above each age group. (*p<0.05, **p<0.01, ***p<0.001).
721	Figure 2 - Development of the AMPA:NMDA balance ((GluA2-GluN1)/(GluA2+GluN1)) in
722	human V1. (A) A scatterplot of the AMPA:NMDA balance across the lifespan fit with a
723	quadratic function (R2=0.406, p<0.0001), which peaked at 10.7 years (95% CI 4.8-23.7 years).
724	(B) Age-Binned results for the AMPA:NMDA balance. Scatterplot, histogram and significance
725	levels plotted using the conventions described in Figure 1.
726	Figure 3 - Development of GluN2B and GluN2A in human V1. (A) A scatterplot of GluN2B
727	expression across the lifespan fit with a Gaussian function (R2=0.176, p<0.01), with peak
728	expression at 1.2 years (+/- 0.7 years). (B) Age-Binned results for GluN2B expression. (C) A

729	scatterplot of GluN2A expression across the lifespan fit with a weighted curve. (D) Age-Binned
730	results for GluN2A expression. Scatterplots, histograms, and significance levels plotted using the
731	conventions described in Figure 1.
732	Figure 4 - Development of GluN2B and GluN2A normalized to GluN1 in human V1. (A) A
733	scatterplot of GluN2B expression normalized to GluN1 across the lifespan fit with a Gaussian
734	function (R ² =0.106, p<0.05), with peak expression at 3.2 years (+/-1.8 years). (B) Age-Binned
735	results for GluN2B normalized to GluN1 expression. (C) A scatterplot of GluN2A normalized to
736	GluN1 expression across the lifespan fit with a weighted curve. (D) Age-Binned results for
737	GluN2A normalized to GluN1. Scatterplots, histograms, and significance levels plotted using the
738	conventions described in Figure 1.
739	Figure 5 - Development of the 2A:2B balance ((GluN2A-GluN2B)/(GluN2A+GluN2B)) in
740	human V1. (A) A scatter plot of the 2A:2B balance across the lifespan fit with a Gaussian
741	function (R2=0.633, p<0.0001), with peak expression around 35.9 years of age (+/- 4.6 years).
742	(B) Age-Binned results for the 2A:2B balance. Scatterplot, histogram, and significance levels
743	plotted using the conventions described in Figure 1.
744	Figure 6 - Development of the VMR for PSD-95, GluA2, GluN1, GluN2A, and GluN2B in
745	human V1. Black dots are the VMR for a moving window of 3 cases. Each protein's scatterplot
746	were fit with a Gaussian function, and the data were normalized to the peak of the function. (A)
747	PSD-95 VMR peaked at 2.5 years (+/- 0.5 years) (R2=0.778, p<0.0001). (B) GluA2 VMR
748	peaked at 2.1 years (+/- 0.6 years) (R2=0.641, p<0.0001). (C) GluN1 VMR peaked at 1.1 years
749	(+/- 0.2 years) (R2=0.8, p<0.0001). (D) GluN2A VMR peaked at 1.6 years (+/- 0.4 years)
750	(R2=0.694, p<0.0001). (E) GluN2B VMR peaked at 1.1 years (+/- 0.3 years) (R2=0.618.

p<0.0001). (F) A summary chart showing the progression of peaks of inter-individual variable	ility
(vertical black line) and the 95% CI (colored bar) for each protein.	
Figure 7 - Summary of the 5 stages of development for the glutamatergic proteins. Changes	for
the individual glutamatergic proteins are illustrated with grey-levels where black represents t	the
maximum expression and lighter grey less expression. GluN1 peaked during the first year (s	stage
1), GluN2B, GluA2, and PSD-95 in late childhood (stage 3), and GluN2A at ~40 years (stage	e 4)
before declining in aging (stage 5). Changes for the 2 indices (2A:2B, GluA2:GluN1) are col	lor-
coded. For the 2A:2B balance red indicates more GluN2B and green more GluN2A, and for	the
AMPA:NMDA balance red indicates more GluN1 and green more GluA2. The shift to more	:
GluN2A peaked in adulthood (stage 4) and then returned to more GluN2B in aging (stage 5).	
The switch to more GluA2 happned at \sim 1 year and continued until late childhood (stage 3).	The
waves of inter-individual variability for each protein are present with dark blue identifying	
maximum variability that occurred in young childhood (stage 2) and lighter blue indicating	
stages with low variability.	

766 Table 1 - Human V1 tissue samples

Age	Age Group	Sex	PMI (Hours)
20 days	Neonate	M	9
86 days	Neonate	F	23
96 days	Neonate	M	12
98 days	Neonate	M	16
119 days	Neonate	M	22
120 days	Neonate	M	23
133 days	Infant	M	16
136 days	Infant	F	11
273 days	Infant	M	10
1 year 123 days	Young Children	M	21
2 years 57 days	Young Children	F	21
2 years 75 days	Young Children F		11
3 years 123 days	Young Children	F	11
4 years 203 days	Young Children	M	15
4 years 258 days	Young Children	M	17
5 years 144 days	Older Children	M	17
8 years 50 days	Older Children	F	20
8 years 214 days	Older Children	F	20
9 years 46 days	Older Children	F	20
12 years 164 days	Teens	M	22
13 years 99 days	Teens	M	5
15 years 81 days	Teens	M	16
19 years 76 days	Teens	F	16
22 years 359 days	Young Adults	M	4
32 years 223 days	Young Adults	M	13

50 years 156 days	Young Adults	M	8
53 years 330 days	Young Adults	F	5
69 years 110 days	Older Adults	M	12
71 years 333 days	Older Adults	F	9
79 years 181 days	Older Adults	F	14

Table 1. Human V1 tissue samples used in this study. Each case is identified by their age in years

and days, age group assignment, sex, and post-mortem interval (PMI).

		Stage 1 (<1 year)	Stage 2 (1-4 years)	Stage 3 (5-11 years)	Stage 4 (12-55 years)	Stage 5 (>55 years)
	GluN1	GluN1				
Individual	GluN2B			GluN2B		
Protein	GluA2			GluA2		
Development	PSD-95			PSD-95		
	GluN2A				GluN2A	
Index	2A:2B	GluN2B			GluN2A	GluN2B
Development	GluA2:GluN1	GluN1		GluA2		
	GluN1		GluN1			
Inter-	GluN2B		GluN2B			
Individual	GluA2		GluA2			
Variability Waves	PSD-95		PSD-95			
waves	GluN2A		GluN2A			